

Dijkstra’s algorithm and its implementation

There is decribed an algotirhm of solving problems that require finding of the

shortest path from one vertex to the other vertices of the graph named Dijkstra’s

Algorithm. We'll concider realization of the algorithm with arrays, STL containers –

queues with priorities priority_queue, sets set, and also use of operations over the heap

push_heap and pop_heap.

Problem. Assume the country G, where there is a lot of cities (let’s denote this set

as V), and a lot of roads connecting pairs of cities (let’s denote them as E). Not the fact

that each pair of cities is connected by a road. Sometimes, to get from one city to

another, you should visit some other cities. The roads have length. There is a capital s

in the country G. You must find the shortest path from the capital to other cities.

1 2

34

100

20

30

1070

























03070100

30010

7010020

100200

source,

capital

Look at the graph. All its edges are weighted – they contains some number. For

example it can be the distance between the cities. The corresponding weighted matrix is

given on the picture at the right. Consider some values of the matrix:

 g[1][4] = 100 means that distance from city 1 to city 4 is 100.

 g[1][4] = g[4][1] means that there is a two-way road between cities 1 and 4.

 g[i][i] = 0 for any vertex i means that distance from city i to city i is 0.

 g[1][3] = ∞ means that there is no direct way from 1 to 3.

For example, the shortest path from 1 to 4 equals to 20 + 10 + 30 = 60, which is

less than the length of the direct road.

Sometimes we can set g[i][j] = -1 (instead of ∞) if there is no edge between i and j.

The mathematical formulation of this problem:

Let G = (V, E) be a directed graph, each its edge is marked with non-negative

number (weight of the edge). Let’s denote some vertex s as a source. You nust find the

shortest path from the source s to all other vertices of G.

This problem has name “Find the shortest paths from a single source”.

If we declare dist[v] to be the length of the shortest path from source to v, then

dist[1] = 0, dist[2] = 20, dist[3] = 30, dist[4] = 60

Any part of the shortest path is itself a shortest path. This allows you to solve this

problem with the implementation of dynamic programming.

Lemma. Let G = (V, E) be a weighted directed graph. If p = (v1, v2, …, vk) is the

shortest path from v1 to vk and 1  i  j  k, then pij = (vi, vi+1, …, vj) is the shortest path

from vi to vj.

Let (s, v) be the length of the shortest path between vertices s and v. The weight

of an edge between vertices u and v will be denoted by w(u, v). Then if u  v is the last

edge of the shortest path from s to v, then
(s, v) = (s, u) + w(u, v)

s u v
w(u,v)

(s,u)

Dijkstra algorithm solves the problem of the shortest path from one source to

others. It is greedy algorithm.

Dijkstra algorithm uses next arrays:

 int g[101][101] – the weighted matrix;

 int used[101], used[v] = 1 if the shortest distance from source to v is already

found;

 int dist[101], dist[v] contains the shortest distance from source to v;

Edge relaxation

Let u → v be an edge of weight w(u, v). Let dist[u] and dist[v] are current shortest

distances from source to the vertices u and v correspondingly.

u v
w(u,v)

source

dist[u] dist[v]

Current shortest distance from source to v is dist[v]. But what is we shall go to v

through vertex u and along the edge u → v? The cost of this path is dist[u] + w(u, v). If

this value is less then the value dist[v] (we are looking for the shortest path), we must

update dist[v]:

 if (dist[u] + g[u][v] < dist[v]) dist[v] = dist[u] + g[u][v];

If above condition takes place, we say that edge u → v relaxes.

When Dijkstra algorithm starts, all values dist[v] are set to ∞ (only dist[source] =

0). dist[v] = ∞ means that current shortest distance from source to v is infinity.

Consider the next sample – relaxation of the edges outgoing from the source:

s

1

2

3

dist[s]=0

dist[1]=∞

dist[2]=∞

dist[3]=∞

5

7

12

s

1

2

3

dist[s]=0

dist[1]=5

dist[2]=7

dist[3]=12

5

7

12

relax(s,1): dist[1] = 5

relax(s,2): dist[2] = 7

relax(s,3): dist[3] = 12

Consider an edge s → 1: dist[s] = 0, dist[1] = ∞. We have the relation:

dist[s] + w(s, 1) < dist[1],

0 + 5 < ∞,

so edge s → 1 relaxes, and dist[1] = dist[s] + w(s, 1) = 0 + 5 = 5.

The same way the edges s → 2 and s → 3 also relax and we get dist[2] = 7, dist[3]

= 12.

Dijkstra algorithm constructs a set of vertices S for which the shortest path from

the source is known. Initially S = { }. If vertex v ∈ S, we set used[v] = 1.

Initially S = { }, so used[i] = 0 for all i (1 ≤ i ≤ n).

If used[v] = 1 for some vertex v, it means that value dist[v] is already optimal and

can’t be decreased (improved).

At each step we add to the set S such vertex v for which the

distance from the source is no more than the distance from the

source to other vertices from V / S. This is done by finding the

minimum among the values of dist[v] for all v ∈ V / S (values v

which are not in S). This addition of v is just characterizes the

principle of a greedy choice. After the addition of v to S the

shortest distance from the source to v will never be improved, set

used[v] = 1.

Since the weights of the edges are non-negative, then the shortest path from the

source to a particular vertex in S will take place only through the vertices in S. This

path we call special. At each step of the algorithm there is an array of dist, that records

the length of the shortest special paths for each vertex. When set S contains all vertices

of the graph (for all vertices will be found special way), then array dist will contain the

length of the shortest paths from the source to each vertex.

DIJKSTRA (G, w, s)

INITIALIZE-SINGLE-SOURCE(G, s)

S ← ∅

Q ← V[G]

while Q ≠ ∅

 do u ← EXTRACT-MIN(Q)

 S = S ∪ {u}

 for each vertex v ∈ Adj[u]

 do Relax(u, v, w)

Consider the graph below. Vertex 4 is the source. Initialize S = {}. For each value

of k we set dist[k] to the maximum positive integer (infinity = ). Set dist[4] = 0, since

the distance from the source to itself is 0.

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2







0

 

First iteration. We find the smallest dist[i], where i is the vertex, not included in

S.

min {dist[1], dist[2], dist[3], dist[4], dist[5], dist[6]} = dist[4] = 0

The first vertex to be included in the set S will be 4: S = {4}. Relax the edges

outgoing from vertex 4:

 4 → 1: dist[1] = min(dist[1], dist[4] + g[4][1]) = min(, 0 + 5) = 5;

 4 → 3: dist[3] = min(dist[3], dist[4] + g[4][3]) = min(, 0 + 16) = 16;

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2

5



16

0

 

Second iteration. We are looking for the least value among dist[i], where і  S =

{4}:

min{ dist[1], dist[2], dist[3], dist[5], dist[6] } = dist[1] = 5

In the second step vertex 1 will be included to set S, i.e. S = {1, 4}. Relax the

edges outgoing from vertex 1:

 1 → 2: dist[2] = min(dist[2], dist[1] + g[1][2]) = min(, 5 + 9) = 14;

 1 → 5: dist[5] = min(dist[5], dist[1] + g[1][5]) = min(, 5 + 2) = 7;

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2

5

14

16

0

7 

Third iteration. We are looking for the least value among dist[i], where і  S =

{1, 4}:

min{ dist[2], dist[3], dist[5], dist[6] } = dist[5] = 7

In the third step vertex 5 will be included to set S, i.e. S = {1, 4, 5}. Relax the

edges outgoing from vertex 5:

 5 → 6: dist[6] = min(dist[6], dist[5] + g[5][6]) = min(, 7 + 7) = 14;

We do not consider edge 5 → 4 because vertex 4 is already in S.

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2

5

14

16

0

7 14

Fourth iteration. We are looking for the least value among dist[i], where і  S =

{1, 4, 5}:

min{ dist[2], dist[3], dist[6] } = dist[6] = 14

We have two vertices with minimum value of dist[i]: they are 2 and 6 (dist[2] =

dist[6] = 14). We can choose any of two vertices.

In the fourth step vertex 6 will be included to set S, i.e. S = {1, 4, 5, 6}. Relax the

edges outgoing from vertex 6. There is no such edges.

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2

5

14

16

0

7 14

Fifth iteration. We are looking for the least value among dist[i], where і  S = {1,

4, 5, 6}:

min{ dist[2], dist[3] } = dist[2] = 14

In the fifth step vertex 2 will be included to set S, i.e. S = {1, 2, 4, 5, 6}. Relax the

edges outgoing from vertex 2:

 2 → 3: dist[3] = min(dist[3], dist[2] + g[2][3]) = min(16, 14 + 1) = 15;

We do not consider edge 2 → 4 because vertex 4 is already in S.

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2

5

14

15

0

7 14

There is no sence to run sixth iteration. Vertex 3 will be included to S. But there

is no any edge outgoing from 3 that runs into vertex not in S.

The result of all iterations is shown in the table. Vertex v, which is selected and

added to the S in each step is highlighted and underlined. The values of dist[i], for

which i  S, are highlighted in italics.

Iteration S dist[1] dist[2] dist[3] dist[4] dist[5] dist[6]

start {}    0  

1 {4} 5  16 0  

2 {1, 4} 5 14 16 0 7 

3 {1, 4, 5} 5 14 16 0 7 14

4 {1, 4, 5, 6} 5 14 16 0 7 14

5 {1, 2, 4, 5, 6} 5 14 15 0 7 14

The iterative process of Dijkstra’s algorithm

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2

5

14

15

7 14

0

E-OLYMP 2351. Dijkstra The directed weighted graph is given. Find the

shortest distance from one vertex to another.

Input. First line contains number of vertices n, starting s and final f vertices. Next

n lines describe weighted matrix.

Output. Print the shortest distance from s to f or -1 if the path does not exist.

1 2

3

42

3start finish

Sample input Sample output
3 1 2

0 -1 2

3 0 -1

-1 4 0

6

► Read weighted matrix g. Run Dijkstra algorithm.

1 2

3

42

3

dist[1] = 0

dist[3] = ∞

dist[2] = ∞

1 2

3

42

3

dist[1] = 0

dist[3] = 2

dist[2] = ∞

1 2

3

42

3

dist[1] = 0

dist[3] = 2

dist[2] = 6

#include <stdio.h>

#include <string.h>

#define MAX 2001

#define INF 0x3F3F3F3F

int i, j, min, n, s, f, v;

int g[MAX][MAX], used[MAX], dist[MAX];

// Relaxation of the edge i -> j

void Relax(int i, int j)

{

https://www.e-olymp.com/en/problems/2351

 if (dist[i] + g[i][j] < dist[j])

 dist[j] = dist[i] + g[i][j];

}

int main(void)

{

 scanf("%d %d %d", &n, &s, &f);

 memset(g, 0x3F, sizeof(g));

 memset(used, 0, sizeof(used));

 memset(dist, 0x3F, sizeof(dist));

 dist[s] = 0;

 for (i = 1; i <= n; i++)

 for (j = 1; j <= n; j++)

 scanf("%d", &g[i][j]);

 for (i = 1; i < n; i++)

 {

 // find vertex v with minimum d[v] among not used vertices

 min = INF; v = -1;

 for (j = 1; j <= n; j++)

 if (used[j] == 0 && dist[j] < min) { min = dist[j]; v = j; }

 // no more vertices to add

 if (v < 0) break;

 // relax all edges outgoing from v

 // process edge v -> j

 for (j = 1; j <= n; j++)

 if (used[j] == 0 && g[v][j] != -1) Relax(v, j);

 // shortest distance to v is found

 used[v] = 1;

 }

 if (dist[f] == INF) printf("-1\n");

 else printf("%d\n", dist[f]);

 return 0;

}

How to resore the shortest path between two vertices? What if we need not only to

print the shortest distance between the vertices, but also the path itself? Let’s use

parent array.

Let parent[u] = v means that after the relaxation of the edge v → u the shortest

distance dist[u] becomes optimal.

1

4

2

1

3

2

4

-1

5

1

6

5

v

parent[v]

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2

5

14

15

7 14

0

par[1]=4

par[4]=-1

par[5]=1 par[6]=5

par[2]=1

par[3]=2

To find the shortest path from source to v, we must move backwards starting from

v:

v, parent[v], parent[parent[v]], …, source, -1

For example, the shortest path from 4 to 6 can be found next way:

6, parent[6] = 5, parent[5] = 1, parent[1] = 4, parent[4] = -1

And we must print the vertices in the reverse order: 4, 1, 5, 6.

E-OLYMP 4856. The shortest path The undirected weighted graph is given.

Find and print the shortest path between two given vertices.

In sample input we must to find the shortest path from 1 to 3.

1 2
1

4 3
5

4 2

► Read list of edges, construct an adjacency matrix g. Run Dijkstra algorithm.

We can print the shortest path from source to v using function PrintPath(v):

void PrintPath(int v)

{

 vector<int> res;

 while (v != -1)

 {

 res.push_back(v);

 v = parent[v];

 }

 for (int i = res.size() - 1; i >= 0; i--)

 printf("%d ", res[i]);

 printf("\n");

}

https://www.e-olymp.com/en/problems/4856

E-OLYMP 8348. Distance between vertices The weighted graph is given. Find

the weight of the minimum path between two vertices.

► Read list of edges, construct an adjacency matrix g. Run Dijkstra algorithm.

E-OLYMP 1388. Petrol stations There are n cities, some of which are connected

by roads. In order to drive along one road you need one tank of gasoline. In each city

the petrol tank has a different cost. You need to get out of the first city and reach the n-

th one, spending the minimum possible amount of money.

► Let cost[i] be the cost of petrol in the city i. For each pair of cities between

which there is a road, create two directed edges: i → j of weight cost[i] and j → i of

weight cost[j].

i j
cost[i]

cost[j]

We must find the path of minimum cost from 1 to n using Dijkstra algorithm.

Graph, given in the first sample input, has the form:

1 2

34

1

10

15

10

1

2

15

2

The path of minimum cost is 1 → 3 → 4, its cost is 1 + 2 = 3.

Next, we consider the implementation of Dijkstra’s algorithm using different

containers and functions described in the template library STL.

STL (Standart Template Library) - a set of template functions and classes in C ++,

which includes a variety of data containers (list, queue, set, map, hash table, priority

queue) and basic algorithms (sorting, searching). The story of the basic concepts and

the template library can be found, for example, in Wikipedia:

http://en.wikipedia.org/wiki/Standard_Template_Library. A detailed description of the

STL can be found at http://www.sgi.com/tech/stl.

Edges with negative length

Dijkstra’s algorithm does not work if there are edges in the graph of negative

length. Consider the graph:

1 2

3

3

2

-2

https://www.e-olymp.com/en/problems/8348
https://www.e-olymp.com/en/problems/1388
http://en.wikipedia.org/wiki/Standard_Template_Library
http://www.sgi.com/tech/stl/

Run Dijkstra’s algorithm from the first vertex, initially setting d = (0, , ). After

the relaxation of edges emanating from the vertex 1, we obtain d [2] = 2 and d [3] = 3.

The shortest distance to the top 2 will be considered as calculated, run relaxation edges

emanating from the vertex array 2. Finally, the shortest paths will take the form: d = (0,

2, 0). Although the shortest path between vertices 1 and 2 is 3 - 2 = 1 (and it passes the

top 3).

Note that adding a large number to the weights of the edges still does not solve the

problem.

Implementation of Dijkstra’s algorithm using sets

Simulate priority queue with a set<pair <int, int>>. Its elements are a pair, the

second element which contains the number of vertices i, and the first - the current

optimal distance from the source to the vertex i (the value of d[i]). The advantage of

this data storage is that the elements of the set s always sort of the first component of

the pair. That is, a couple with a top added each time during the set S, and the top s is

available as * s.begin ().

#include <cstdio>

#include <set>

#include <memory>

#define MAX 10000

#define INF 0x3F3F3F3F

using namespace std;

typedef pair<int, int> ii;

int i, v, n, dist, source, b, e;

int m[MAX][MAX], d[MAX];

set<ii> s;

int main(void)

{

 scanf("%d %d", &n, &source);

 memset(m, 63, sizeof(m));

 while(scanf("%d %d %d", &b, &e, &dist) == 3) m[b][e] = dist;

 memset(d, 0x3F, sizeof(d)); d[source] = 0;

 s.insert(ii(0,source));

The body of the while loop is executed n times (n - the number of vertices in the

graph). At each iteration, one and only one edge is entered into the set S and removed

from further consideration. At the last, n - th iteration, no edge relaxes and from the set

s is removed information about the latest top.

 while(!s.empty())

 {

 ii top = *s.begin(); s.erase(s.begin());

 v = top.second;

Vertex v is added to the current step in the set S. Produce relaxation of edges

leading from v. If an edge (v, i) relaxes, it should be removed from the pair s (d[i], i))

and added (d[v] + m[v][i], i).

 for(i = 1; i <= n; i++)

 if (d[i] > d[v] + m[v][i])

 {

 if (d[i] != INF) s.erase(s.find(ii(d[i],i)));

 d[i] = d[v] + m[v][i];

 s.insert(ii(d[i],i));

 }

 }

 for(i = 1; i <= n; i++)

 printf("From source %d to destination %d distance is %d\n",

 source, i, d[i]);

 return 0;

}

Implementation of Dijkstra’s algorithm using a priority queue

Implement Dijkstra’s algorithm using a priority queue. This data structure is

supported by standart template library and is called priority_queue. It allows you to

store a pair (key, value) and to perform two operations:

• insert element with given priority;

• extract the element with the highest priority;

Declare priority queue pq, which elements are pairs (distance, node), where

distance is the distance from the source to the node. When you insert items, the head of

the queue always contains a pair (distance, node) with the smallest distance. Thus, the

vertex to which the distance from the source is minimum, available as pq.top().second.

Arbitrary elements cannot be removed from the priority queue (although

theoretically heaps support such operation, but in the standard library it is not

implemented). Therefore, the relaxation will not remove the old pairs from the queue.

As a result, the queue can contain simultaneously several pairs of the same vertices (but

with different distances). Among these pairs, we are interested in only one for which

the element pq.top().first equals to dist[to], all the rest are fictitious. Therefore, at the

beginning of each iteration, when we take from queue next pair, we will check, if it is

fictitious or not (it is enough to compare pq.top().first and dist[to]). This is an important

modification, if it is not done, this will lead to spoilage of the asymptotic behavior to

O(nm).

1. Initialize distances of all vertices as infinite.

2. Create an empty priority_queue pq. Every item of pq is a pair (distance,

vertex). Distance is used as first item of pair as first item is by default used to compare

two pairs

3. Insert source vertex into pq and make its distance as 0.

4. While either pq doesn't become empty

 a) Extract minimum distance vertex from pq. Let the extracted vertex be u.

 b) Loop through all adjacent of u and do following for every vertex v.

 // If there is a shorter path to v through u.

 If dist[v] > dist[u] + weight(u, v)

 (i) Update distance of v, i.e., do dist[v] = dist[u] + weight(u, v)

 (ii) Insert v into the pq (even if v is already there)

5. Print distance array dist[] to print all shortest paths.

Example. Let’s simulate Dijkstra’s algorithm using priority queue. We’ll insert to

priority queue the pairs (distance, vertex). We start in vertex 4. Shortest path from 4 to

4 is 0. So insert to the queue the pair (0, 4).

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2

0
pq =((0,4))

Front of the queue contains vertex 4. Remove it from the queue. Make relaxation

of the edges adjacent to the vertex 4.

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2

5

16

0
pq =((5,1), (16,3))

Front of the queue contains vertex 1. Remove it from the queue. Make relaxation

of the edges adjacent to the vertex 1.

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2

5

16

0
pq = ((7,5), (14,2), (16,3))

14

7

Front of the queue contains vertex 5. Remove it from the queue. Make relaxation

of the edges adjacent to the vertex 5.

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2

5

16

0
pq = ((14,2), (14,6), (16,3))

14

7 14

Front of the queue contains vertex 2. Remove it from the queue. Make relaxation

of the edges adjacent to the vertex 2.

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2

5

15

0
pq = ((14,6), (15,3), (16,3))

14

7 14

Make relaxation of edges adjacent to the vertices 6 and 3. None of the edges relax.

The next pair (16, 3) is fictitious, since 16 > dist[3] = 15.

The final graph states are following:

1

2

3

4

65

9

5

8

1

16

5

3

7

4
2

5

15

0
pq = ()

14

7 14

E-OLYMP 2965. Distance between the vertices Undirected weighted graph is

given. Find the weight of the minimal path between two vertices.

► Number of vertices n ≤ 105, let’s use priority queue to solve the problem.

#include <cstdio>

#include <vector>

#include <queue>

https://www.e-olymp.com/en/problems/2965

#define INF 0x3F3F3F3F

using namespace std;

int b, e, w, v, j, i, tests;

int n, m, start, fin;

vector<int> dist;

struct edge

{

 int node, dist;

 edge(int node, int dist) : node(node), dist(dist) {}

};

bool operator< (edge a, edge b)

{

 return a.dist > b.dist;

}

vector<vector<edge> > g;

void Dijkstra(vector<vector<edge> > &g, vector<int> &d, int start)

{

 priority_queue<edge> pq;

 pq.push(edge(start, 0));

 d = vector<int>(n + 1, INF);

 d[start] = 0;

 while (!pq.empty())

 {

 edge e = pq.top(); pq.pop();

 int v = e.node;

 if (e.dist > d[v]) continue;

 for (int j = 0; j < g[v].size(); j++)

 {

 int to = g[v][j].node;

 int cost = g[v][j].dist;

 if (d[v] + cost < d[to])

 {

 d[to] = d[v] + cost;

 pq.push(edge(to, d[to]));

 }

 }

 }

}

int main(void)

{

 scanf("%d %d %d %d", &n, &m, &start, &fin);

 g.resize(n + 1);

 for (i = 0; i < m; i++)

 {

 scanf("%d %d %d", &b, &e, &w);

 g[b].push_back(edge(e, w));

 g[e].push_back(edge(b, w));

 }

 Dijkstra(g, dist, start);

 if (dist[fin] == INF)

 printf("-1\n");

 else

 printf("%d\n", dist[fin]);

 return 0;

}

E-OLYMP 625. Distance between the vertices Undirected weighted graph is

given. Find the weight of the minimal path between two vertices.

► Number of vertices n ≤ 5000, let’s use priority queue to solve the problem. In

this problem we need not only to find the shortest distance between the vertices, but the

shortest path also.

Implementation of Dijkstra’s algorithm using the heap

Priority queue, as it is known, can be implemented using the heaps. Instead of

direct declaration of priority queue we will use a vector of pairs pq, and the operations

of insertion / extraction of its elements will be used by the Template Library functions

for maintaining the basic properties of the heap pop_heap and push_heap. The main

property of the heap is supported on a set of elements from pq[0] to pq[len].

#include <cstdio>

#include <queue>

#include <algorithm>

#define MAX 10000

using namespace std;

vector<pair<int,int> > pq(MAX); //(distance,node)

vector<vector<int> > m(MAX, vector<int> (MAX));

vector<int> dist(MAX,0x3FFFFFFF);

int n, src;

int main(void)

{

 int i, a, b, d, len;

 scanf("%d %d",&n,&src);

 while(scanf("%d %d %d", &a, &b, &d) == 3) m[a][b] = d;

 pq[0] = make_pair(0,src); len = 1; dist[src] = 0;

 while(len)

 {

 pair<int,int> s = pq[0];

 pop_heap(pq.begin(),pq.begin()+len, greater<pair<int,int> >()); len--;

 for(i = 1; i <= n; i++)

 if (m[s.second][i] && (dist[i] > dist[s.second] + m[s.second][i]))

 {

 dist[i] = dist[s.second] + m[s.second][i];

 pq[len] = make_pair(dist[i],i); len++;

 push_heap(pq.begin(),pq.begin()+len,greater<pair<int,int> >());

 }

 }

 for(i = 1; i <= n; i++)

 printf("From source %d to destination %d distance is %d\n",

 src, i, dist[i]);

 return 0;

}

The run time of Dijkstra’s algorithm

The complexity of Dijkstra’s algorithm consists of two basic operations:

https://www.e-olymp.com/en/problems/625

• the time spent with the lowest vertex distance d[v];

• time of the relaxation time (time change of the d[to]).

Suppose | V | = N – the number of vertices, and | E | = M – the number of edges.

Simple implementation of these operations will require, respectively O(n) and O(1)

time. Taking into concideration that the first operation is performed only in O(n) time,

and the second in O(m), the asymptotic of the simplest implementation of Dijkstra’s

algorithm will be O(n2 + m).

While using arrays for search the shortest paths algorithm requires n – 1 iterations,

in each of which the search for v and relaxation of all outgoing edges of it is done

during the O(n). Thus, the overall execution time of the algorithm is O(n2).

The asymptotic behavior of O(n2 + m) is optimal for dense graphs, when m ≈ n2.

The more graph is sparse (ie the less m, compared with the maximum number of edges

n2), the less optimal this estimate becomes because of the first term. Thus, it is

necessary to improve the operating times of the first type while not greatly deteriorating

the running times of the second type.

For example, the Fibonacci heap allows generate the operation of the first type in

O(log2n), and the second in O(1). Therefore, while using Fibonacci heaps time of

Dijkstra’s algorithm will be O(log2n+m), which is nearly the theoretical minimum for

the shortest path search algorithm. However, Fibonacci heap is quite difficult to

implement, and also have a considerable constant hidden in the asymptotic behavior.

As a compromise, you can use the structure of the data set or design

priority_queue, allowing to carry out both types of operations (recovery of minimum

and update element) for O(log2n). Then time of Dijkstra’s algorithm will be O(nlog2n +

mlog2n) = O(mlog2n).

In the Olympiad competitions task of finding ways to fairly widespread. For

example, with the following tasks required to use Dijkstra’s algorithm:

[Tianshan] http://acm.tju.edu.cn/toj : 2134 (106 miles to Chicago), 2819 (Travel),

2870 (The K-th City).

[Topkoder] www.topcoder.com : SRM 241 (AirTravel).

 BIBLIOGRAPHY

1. "The construction and analysis of algorithms" feed T., Charles Leiserson,

Rivest, R., K. Stein - Moscow, St. Petersburg, Kiev, 2005 - 1292 p.

2. "Practice and Theory of Programming", Book 2. Vinokurov NA, Vorozhtsov

AV - M: Fizmatkniga, 2008 - 288 p.

3. Article "binary pyramid", Journal of potential №7, 2007.

Shortest Path Algorithm

http://acm.tju.edu.cn/toj
http://www.topcoder.com/

 Runs on a weighted graph;

 Starts with an initial node and a goal node;

 Finds the least cost path to the goal node.

Dijkstra’s Algorithm

 Assign to every node a tentative distance value: set it to zero for our initial

node and to infinity for all other nodes.

 Keep a set of visited nodes. This set starts with just the initial node.

 For the current node consider all of its unvisited neighbours and calculate

(distance to the current node) + distance fron the current node to the

 neighbour). If this is less than their current tentative distance, replace it

with this new value.

 When we are done considering all of the neigbours of the current node,

mark the current node as visited and remove it from the unvisited set.

 If the destination node has been marked visited, the algorithm has finished.

 Set the unvisited node marked with the smallest tentative distance as the

next “current node” and go back to step 3.

